Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit

نویسندگان

  • Sebastiano Boscarino
  • Lorenzo Pareschi
  • Giovanni Russo
چکیده

We consider the development of Implicit-Explicit (IMEX) RungeKutta schemes for hyperbolic and kinetic equations in the diffusion limit. In such regime the system relaxes towards a parabolic diffusion equation and it is desirable to have a method that is able to capture the asymptotic behavior with an implicit treatment of limiting diffusive terms. To this goal we reformulate the problem by properly combining the limiting diffusion flux with the convective flux. This, however, introduces new difficulties due to the dependence of the stiff source term on the gradient. Thus, at variance with standard IMEX schemes, the methods here proposed work uniformly with respect to the small scaling parameter and in the zero relaxation limit originates a fully implicit method for the diffusion equation. Several numerical examples including neutron transport confirm the theoretical analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implicit-explicit Runge-kutta Schemes for Stiff Systems of Differential Equations

We present new implicit-explicit (IMEX) Runge Kutta methods suitable for time dependent partial differential systems which contain stiff and non stiff terms (i.e. convection-diffusion problems, hyperbolic systems with relaxation). Here we restrict to diagonally implicit schemes and emphasize the relation with splitting schemes and asymptotic preserving schemes. Accuracy and stability properties...

متن کامل

Implicit-Explicit Runge-Kutta Schemes and Applications to Hyperbolic Systems with Relaxation

We consider implicit-explicit (IMEX) Runge Kutta methods for hyperbolic systems of conservation laws with stiff relaxation terms. The explicit part is treated by a strong-stabilitypreserving (SSP) scheme, and the implicit part is treated by an L-stable diagonally implicit Runge Kutta (DIRK). The schemes proposed are asymptotic preserving (AP) in the zero relaxation limit. High accuracy in space...

متن کامل

Nonstandard explicit third-order Runge-Kutta method with positivity property

When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...

متن کامل

On a Class of Implicit-Explicit Runge-Kutta Schemes for Stiff Kinetic Equations Preserving the Navier-Stokes Limit

Implicit-explicit (IMEX) Runge-Kutta (RK) schemes are popular high order time discretization methods for solving stiff kinetic equations. As opposed to the compressible Euler limit (leading order asymptotics of the Boltzmann equation as the Knudsen number ε goes to zero), their asymptotic behavior at the Navier-Stokes (NS) level (next order asymptotics) was rarely studied. In this paper, we ana...

متن کامل

On a Class of Uniformly Accurate IMEX Runge--Kutta Schemes and Applications to Hyperbolic Systems with Relaxation

In this paper we consider hyperbolic systems with relaxation in which the relaxation time ε may vary from values of order one to very small values. When ε is very small, the relaxation term becomes very strong and highly stiff, and underresolved numerical schemes may produce spurious results. In such cases it is important to have schemes that work uniformly with respect to ε. IMEX R-K schemes h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2013